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Perspective

 NLDBD search seems to have entered a new era:
“Maybe not big/good enough to succeed,
but too costly to fail”
* Failure: background-limited result:

* Success: B = 0.7 event/ton/year

* Energy resolution, extreme radio-purity, and shielding
have been insufficient (to date) to achieve sensitivity at
ton-scale

* Very difficult to produce background estimates based on
measurements of materials/environment
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Xenon: Energy resolution depends strongly on density!
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Fig. 5. Density dependencies of the intrinsic energy resolution (% FWHM) measured for 662 keV gamma-rays.

For p <0.55 g/cm3, ionization energy resolution is “intrinsic”
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What Is occurring, as p

Increases?

 Critical temperature of xenon is room temp
* |Increasing density = more “liquid phase”

* Energetic electrons create 0-rays
— LXe + 0-rays -2 high ionization density
— High ionization density - recombination
— Recombination - scintillation
— O-ray spectrum = non-Gaussian behavior

- Large energy partition fluctuations between
lonization and scintillation in LXe, but not In
gas
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Impact of fluctuations

Signal fluctuations: oy = (F-N)/2

F = Fano factor:

— Gas phase: F=0.15+0.03

— Liquid phase: F =20

A weighted sum of ionization | and scintillation S
signals, E = al + bS, can, in principle, entirely
recover near-intrinsic energy resolution

But: typical overall QDE < 20%
—> statistically impoverished corrections in LXe

In gas phase, the ionization signal alone is
sufficient
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Intrinsic Energy resolution at Qg = 2457 keV

SE/E = 2.35 - (F-W/Q)"2
— F = Fano factor (HPXe) : F=0.15
— W = Average energy per ion pair. w ~ 25 eV
— Q = Energy deposited from 36Xe --> 136Ba:
N = Q/w ~100,000 primary electrons

oy = (F-N)2 ~124 electrons rms!

OE/E = 0.3% FWHM intrinsic HPXe
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ENERGY PLANE (PMTs)
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NEXT-XX: A series of photonic
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EL mode is essential to obtain linear gain;
avalanche fluctuations are avoided, and the
excellent Fano factor in gas is not lost

TRACKING PLANE (SiPMs)

®NEXT: High Pressure Xenon (HPXe) TPC
operating in electroluminescent (EL) mode.

®NEXT-100: 100 kg of Xenon enriched at
90% in Xe-136 (in stock) at a pressure of
15 bar.

® The event energy is integrated by a plane
of radiopure PMTs located behind a
transparent cathode (energy plane),

®PMTs also provide t, — essential for the z
coordinate and fiducialization.

®The event topology is reconstructed by a
plane of radiopure silicon pixels (SiPMs)
(tracking plane).



NEXT: Salient features
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®Excellent resolution (~1% FWHM
measured at 662 keV by NEXT prototypes,
extrapolates to 0.5 % FWHM at Qbb if all
systematics are well controlled

®Topological signature (TS) is the ability to
distinguish between signal (“double
electrons”) and background (“single
electrons”); evidence exists that this works
well.

®Target = detector. Tracking establishes
fiducial region, away from surfaces.

®TPC: generally scalable. Economies of
scale; V/S ratio increases linearly with L.

®Xenon: the cheapest isotope to enrich in
the market (NEXT owns 100 kg of enriched
xenon, ~1 ton exists worldwide).
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A typical '3’Cs y waveform (sum of 19 PMTs)
~300,000 detected photoelectrons

Waveform: Event 488, Channel 22
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Hot Getter ~ Gas System HHV modules
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Topological signature - simulation
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Valencia

New low-background SiPM implementation
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DATA: Real track from 37Cs y-ray — reconstructed with
SiPMs
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Transverse Diffusion
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CO2: 0.1 % (CH4: 0.5 %) —> DT < 1.5 mm

CO2: 0.05 % (CH4: 0.25 %) —> DT <2 mm
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NEXT-10 at a glance

ime Projection Chamber: Pressure vessel:
10 kg active region, 50 cm drift length _ 6-Ti steel, 30 bar max pressurel

racking plane:
1,800 SiPMs,
1 cm pitch

Energy plane:
12 PMTs,
1B80% coverage

Inner shield:
opper, 6 cm thick



Inner copper shield

Inner Copper Shield made of low-background copper (< 10 muBg/kg)
Barrel ICS thickness is 6 cm (12 cm in NEXT-100). End-cup ICS is 12 cm (12 cm in NEXT-100)



—nergy Plane installation (July 2015)
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NEXT-10 at the LSC
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| NEXT-10 on the seismic sueeort table, inside the Lead Castle at the LSC '



NEXT-100 Pressure Vessel




NEXT 100 kg detector at LSC: main features

Time Projection Chamber: Pressure vessel:
100 kg active region, 130 cm drift length stainless steel, 15 bar max pressure

Engcgg g'&)_lrasne: Tracking plane:
: 7,000 SiPMs,
30% coverage i

\
n .‘-
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Outer shield: Inner shield:
lead, 20 cm thick copper, 12 cm thick
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About Xenon in Gas Phase

* Excellent intrinsic energy resolution in gas
phase:

OE/E < 3 x10° FWHM at "°Xe Qg5 (2457 KeV)
Hard to realize, but maybe 8E/E < 5 x10-° FWHM

 Topology available for background rejection
Single electrons (y-rays) create one endpoint blob
Double-beta decay events create two endpoint blobs

» electroluminescence > noiseless, linear gain

* non-cryogenic = flexibility, new approaches

6 October 2015 CPAD -
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“Tagging” the barium daughter
atom

* The Reward:

* normal backgrounds do not make barium
« = a (possibly) background-free experiment!

* The Situation:

« Suppose ~1028 atoms in your fiducial volume
 2v B3 decays are occurring fairly often

* The Challenge:
* |deally, detect the birth of the barium daughter:

— Time window: a few milliseconds

— Spatial window: ~ 1000 mm?3 (within locus of decay
electrons)




Xenon's barium daughter

* |In the decay xenon - barium, the daughter atom is strongly ionized
by the nascent electrons emerging from the nucleus and by shell
relaxation

« Partial neutralization of barium occurs by electron capture from
nearby neutral xenon atoms (ionization potential 12.14 eV)

* Process stops at Ba** because the ionization potential of Ba** is
10.04 eV; it can’t take another electron from a neutral xenon atom

- Ba™ is the expected outcome in pure xenon, gas or
liquid
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Ba* or Ba*t 7?7

« Ba* ?
« Barium must be transported out of LXe to a low-pressure trap

 As ++ or + or neutral ?7?
* For Ba®' spectroscopy, must ensure that barium is in Ba* state

* Must show that this ion is really associated with the event

« Ba** ?
« Can this natural state be exploited in situ?

6 October 2015 CPAD - 27



There might be a way to use Ba

o+

« The technique of Single Molecule Fluorescent
Imaging may be adaptable here.

My idea is to exploit a remarkable chemical effect: the
transformation of non-fluorescent molecular precursors
into a robust fluorescent state by capture (chelation) of
doubly ionized alkaline earth elements, such as Ca**

 Maybe Ba*™ too!

« Calcium and Barium are congeners = similar
chemistry...
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Fluo-3 converts from non-
fluorescent to a fluorescent state by
chelation!

CO,H CO5H CO,H CO,H O o)
N N (‘/\O O)\‘
O " Ca®’ &N’Oc&p *6'N'>
g O\_/O@
Cl N Cl CH, CH,
HO O @) ‘ O
Fluo 3 O  Fluo 3-Ca complex

Once Ca** is captured by Fluo-3, its responsiveness to external excitation
increases by a factor of 60 -80. Two-photon excitation with IR is also possible

This might work for Barium as well since barium and calcium are congeners.
Fluorophores exist for for Pb**, Hg**, Cu...)

2014 Nobel Prize in Chemistry awarded to three physicists for developing SMFI
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A Fluorescent indicator specific to Ba*™!
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Scheme 1

“Monoazacryptand 1”

Y. Nakahara, T. Kida, Y. Nakatasuji, M. Akashi,

Chem. Comm., Roy. Soc. of Chem., 2004,
p224-225
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6 October 2015

Highly specific to Ba*™!

200 € 178

Li* Na&' K° Rb" C° Mg~ &' Ba®

Metal lons (10 equiv., 1x10°° M)

The highly selective and sensitive fluorescence detection of Ba2*
among alkali metal and alkaline earth metal cations was
successfully achieved in aqueous media by the combination of a

novel monoazacryptand type of fluorophore and micelles of
Triton X-100.
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A TPC with a fluorescent
cathode?

* One can imagine a cathode surface coated
with untransformed molecules, waiting to
respond strongly after capture of one Ba*".

6 October 2015 CPAD - 32



A TPC with a fluorescent
cathode?

* One can imagine a cathode surface coated
with untransformed molecules, waiting to
respond strongly after capture of one Ba*".

* One can imagine that the cathode surface is
a dielectric belt that transports at a few mm/s
the latent image to a molecular-ionic imager.
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A TPC with a fluorescent
cathode?

* One can imagine a cathode surface coated
with untransformed molecules, waiting to
respond strongly after capture of one Ba*".

* One can imagine that the cathode surface is
a dielectric belt that transports at a few mm/s
the latent image to a molecular-ionic imager.

* |onization electrons liberated by the decay
electrons provide a 3-D image of the event,
and also the needed energy resolution, a /a
NEXT
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LINEAR SCAN FOR
SINGLE MOLECULE
FLUORESCENT IMAGING
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Not quite right...

* Molecular coating may not be stable on belt?
— Leave belt uncoated...
— Transfer ion to a coated roller by electrostatics
— Chelation occurs on roller

6 October 2015 CPAD -
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Not quite right...

* Molecular coating may not be stable on belt?
— Leave belt uncoated...
— Transfer ion to a coated roller by electrostatics
— Chelation occurs on roller

* The non-fluorescent molecular precursors
may still contaminate the scan:
— Extract the chelated ion to a second roller
— Only chelated ions exist on second roller
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Not quite right...

* Molecular coating may not be stable on belt?
— Leave belt uncoated...
— Transfer ion to a coated roller by electrostatics
— Chelation occurs on roller

* The non-fluorescent molecular precursors
may still contaminate the scan:
— Extract the chelated ion to a second roller
— Only chelated ions exist on second roller

Do SMFI scans on second roller
— Discovery of new ions is automatic
— Repeated verification scans are automatic

6 October 2015 CPAD -
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The belt + rollers scenario

Transform appearance of new Ba++ chelate back into TPC
voloHamne2os CPAD -
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Clearly, an out-of-the-box idea!

* Not clear if this idea can really work!
— many unfamiliar but plausible steps must be efficient

* Current issues include:
— How to make a Ba** source for test setups

— Impact of neutral xenon atoms clustering around Ba**

— Transfers, molecular coatings, single molecule
sensitivity...

* The idea serves to stretch our imagination!

* If any practical barium-tagging solution
exists, it is unlikely to have a conventional
nature.
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Outlook

 NEXT-10:

— Demonstrate power of topological signature using
2-v decays; explore benefits of diffusion
reduction; tracking density; optimize algorithmic
approaches

 NEXT-100:

— Demonstrate scalability; energy resolution;
tracking; calibration; stability; limit on 0-v decay

« NEXT-XXX ?7?
— perhaps: a set of N 300 — 400 kg modules; both
enriched and depleted xenon running possible

— Ba**tagging in situ may permit background free
result
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6 October 2015

Thank you
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Backup slides



Pressure vessel
PMTs

PMT enclosures
Enclosure windows
EP support plate
SiPM boards
SiPMs
Field-cage barrel
Shaping rings
Electrode rings
Anode plate

FC resistor chain
Inner shield

Outer shield

*
*
*
[

Background rate (10~ counts keV-' kg™ yr™)
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The x-ray peaks at ~30 keV are captured precisely
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NEXT Expected Performance

Systematic assay of ALL detector components at the LSC HPGe facility

Development of full MonteCarlo simulations

Selection criterion BBOV BB2v 20971 2B

Fiducial, single track 9 5 _s

E € [2.4,2.5] MeV 04759 8.06 x 10 2.83 x 10 1.04 < 10

Track with 2 blobs 0.6851 0.6851 0.1141 0.105

Energy ROI 0.8661 3.89 x 10> 0.150 0.457

Total 02824 215x 1078 49x107 4.9 %1077
Detector subsystem | 214B; Total
Pressure vessel < D23 < 0.06 <029
Energy plane < 0.57 < 2.10 < 2.67
Tracking plane <040 < 0.50 < 0.90
Electric-field cage < 0.15 < 0.81 < 0.96
Inner shielding < 0.05 & 0.7 Z0.75
Outer shielding 0.027(13) 0.25(14) 0.28(14)
Total <143 <4.42 <585 10*/(keV kg yr)
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Topological signature - simulation
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Valencia

New low-background SiPM implementation
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Transverse Diffusion
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CO2: 0.1 % (CH4: 0.5 %) —> DT < 1.5 mm

CO2: 0.05 % (CH4: 0.25 %) —> DT <2 mm
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Original tagging idea:
1980 - 1991

Ba* system best studied
(Neuhauser, Hohenstatt,
Toshek, Dehmelt 1980)

Single ions can be detected
from a photon rate of 107/s

Pursued by EXO...

But:
Triplet state is quenched
in dense gas!

Can excite with blue,
look only for red

6 October 2015

Identify the barium daughter

by optical spectroscopy
(M.Moe PRC44 (1991) 931)
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No scheme for extraction from LXe to
vacuum has been successful, as yet
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The nuclear matrix element picture

P. Vogel 2014
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Matrix elements for “standard mechanism”
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® Benchmark sensitivity for standard mechanism  Assume most “pessimistic” vatues for

nuclear matrix elements

-

Light bands:
uncertainty from
oscillation
parameters(90% CL)
. /
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Dark bands:
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® Ton-scale experiment will make a discovery if spectrum has

|I. inverted ordering or

2. Mightest = 50 meV (irrespective of ordering)
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