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Two views of dark matter



Astronomer

Atoms

Dark
matter there is. 72%
Dark
_ Matter
We know how it makes 23%

the universe look the way
it does and how it created

large-scale structure.

We have measured gravitational lensing and galactic rotation curves
influenced by dark matter.

The dark matter density at Earth is 0.39 + 0.03 GeV/cm’.




Particle Physicist

We have a much better :
idea of what dark matter - @9 |- @

Is not, than what it is. im mge b:“tm
. & |- @& 3

It is not made up of " o L=
Standard Model particles. é » . @ &
i | gedtrol I none 1 necitho

We do not know what dark matter is.

GAUGE BOSONS



Main modes of access

1. 'Direct’ detection: nuclear or photon recoil
e e.g. CDMS, LUX, ADMX ...

2. ‘Indirect’ detection: annihilation leading to observable decay
products

e e.g. AMS, Fermi, HESS, lceCube
3. Production in the laboratory

e e.g. LHC



Opinion

Not all three methods can definitively observe dark matter

The most compelling would be an observation of nuclear
recoils 5o above background

But remember the solar neutrino problem ... it took
correlation with an astrophysical phenomenon from
directional measurements to seal the deal

What does this mean for indirect experiments or for the LHC?
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Nuclear Recoil Experiments

. are the most direct test of dark matter

There has been incredible progress in the
last 2.5 decades:

Either cross section is smaller than 107

cm® or DM is heavier than 10 TeV

—> we are looking for a particle with an
interaction strength 10 billion times
smaller than a neutrino!

Neutrino backgrounds become important
47 2
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CDMS 112010

1.7 kg-y

10 keV threshold
0.03/kg-keV-day

LUX 2014

28 kg-y

3 keV threshold
0.003/kg-keV-day



Directional detection

WIMPS have a preferred |
direction in galactic coordinates Nl

_

Dark matter "wind"
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Directional optimization study

Baseline: Et = 20 keV, S/N = o0, 3D vector readout

2-d axial read-out in optimal plane, reduced angles

difference from baseline configuration Ngo | Nos
none 7 11
Er =0 keV 13 21
no recoil reconstruction uncertainty D 9
Etr =50 keV 5 7
Er =100 keV 3 5
S/N =10 8 14
S/N =1 17 27
S/N = 0.1 99 170
3-d axial read-out 81 130
2-d vector read-out in optimal plane, raw angles 18 26
2-d axial read-out in optimal plane, raw angles 1100 | 1600
2-d vector read-out in optimal plane, reduced angles | 12 18
190 | 270

Astropart. Phys. 27:142-149 (2007)
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Some existing directional experiments

Volume Angular

Collaboration Technology Target _ Head-tall

(m?3) resolution

DRIFT NITPC CS,+ CF» MWPC 2D + 2z 0.8 yes?

DMTPC TPC cr,  Optical (CCD)2D 4 pp 4 <15 yes
+ charge + timing © 100 keV

NEWAGE TPC CF4 uPIC 2D + timing  0.036 40 no
© 50 keV

MIMAC TPC  CFs+ CHF; VicroMegas 2D + 5 556 L yes
timing © 60 keV

D3 TPC HeCO> Si pixel 2D + z 6E-05 <1

© 1 MeV

Emulsions  emulsions AgBr _ Oppiiteal n/a 20 no
(microscope) 2D © 60 keV

All are sensitive to both SI and SD interactions



Case example: DMTPC
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Case example: DMTPC
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Case example: DMTPC
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Case example: DMTPC
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Case example: DMTPC
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Signal Directionality Flowchart

For DMTPC-like detectors

Initial Distribution (i.e. Reconstruction™
WIMPs at Earth)
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TRIM track

200 keV °F
30 torr CF4
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Head-Tail (VLOW)
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Projected directional sensitivity
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Projected directional sensitivity

—> Current level of sensitivity from counting experiments
lop = 1 fb] can be achieved with 300 (450) m3-years, for a
WIMP mass of 1000 (100) GeV.

Acceptance Probabilities (p =0. 1%)
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Projected directional sensitivity

—> Current level of sensitivity from counting experiments
lop = 1 fb] can be achieved with 300 (450) m3-years, for a
WIMP mass of 1000 (100) GeV.

This is equivalent to 2.4 (3.6) 125-m?>-years



Background-free DRIFT lld

Adding O> to CSp-CF4 mixture
produces minority peaks and
allows for z fiducialization and
background-free running
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Where to go from here

Without reliable head-tail determination at low energies, axial information will
dominate directional sensitivity for low-pressure TPC experiments

... when does it make more sense to increase pressure (target mass) and focus only on

axial sensitivity?
Can novel gas mixtures enhance directional performance and sensitivity?

Light nuclei would experience less nuclear stopping, but energy spectrum suppressed by

reduced mass
Adding light targets with spin-dependent cross section, e.g. H, 3He, CH,?

Adding Ne to CF, to make Penning mixture? Other high-gain variants?

Can photon collection efficiency be improved with new(er) technologies, e.g.
SiPM, MPPC?



Columnar Recombination
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CR increases as angle o decreases

Directionality information obtained prior to drift

J. Phys. Conf. Ser. 460 012006



Current progress in CR

NICE (E. Baracchini et al.)

Detect primary scintillation light (timing) using commercial SiPMs in energy plane
Detect ionization (tracking) using GEMPix

Need to find an appropriate capture agent for Xe

Head-tail sensitivity?

See E. Baracchini's talk at Cygnus 2015 directional workshop

TEA-Pot

Preliminary studies with TMA report no detection of scintillation light, suggesting it might
not be suitable

See Y. Nakajima's talk at 7th Symposium on large TPCs



Polar angle CR detector

Detector type space-fixed Earth-fixed
Axial Head-tail Axial Head-tail
. . . . ~193.2 + 2.1 19.22 +0.19
Angular Only 4 : .70 £0.13 767.0 £ 9.2 23.91 +0.25
Xenon, 30 GeV WIMP, 3 keV threshold 168.1 £ 1.6 535.6 £ 5.8
Xenon, 30 GeV WIMP, 10 keV threshold 218.5 2.0 702.7 £ 7.6
Xenon, 50 GeV WIMP, 30 keV threshold 1318 £ 12 4087 £ 44

Space-fixed polar detector in optimal orientation has roughly same performance
as detector with full 3D tracking

For 5 x 104 cm? S| cross section and 30 GeV WIMP, an exposure of 770

(2480) kg-year with a space-fixed (Earth-fixed) axial polar detector and 10 keV
threshold can reach a 3o signal

Phys. Rev. D 92, 043523 (2015)



LHe

A Concept for A Dark Matter Detector Using Liquid Helium-4

W. Guo®
Mechanical engineering department, Florida State University, Tallahassee, FL 32310, USA

D.N. McKinsey!

LOW target mass means h|gh Physics department, (l};zl:edUn;zg.:g; goe‘wz(ﬁgt))en, CT 06520, USA
sensitivity to light (1-10 GeV)
WIMPs rings can be as low as on the order of 1 m/s [124]. How-

ever, it has been shown that at low temperatures when
isotropically purified helium is pressurized to above 15

_ bar, electrons can be driven at a speed close to or higher
Many signals to choose from: than the Landau velocity (~ 50 m/s). Instead of nucleat-

- Lo - - ing vortex rings, the electrons spontaneously emit roton
primary scintillation light (Sl)’ pairs [125-127]. The rate of roton emission depends on
lonization charge (52), the field strength. Furthermore, it has been shown that
metastable triple t excimers (53) when the electron speed is not too much higher than the

’ Landau velocity, the majority of the emitted rotons tend

rotons, phonons, electron bubbles to have momentum aligned in the same direction with the
electron velocity [128]. A roton beam is formed accompa-

nying every extracted electrons. Note that rotons in the

Directionality from rotons?

Phys. Rev. D 87:115001 (2013)



A few scenarios
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Strategy for directional detectors

e Continue pushing directional R&D on multiple fronts

e Further investigation into fields of chemistry and material science can help
identify optimal gas mixtures, scintillators, etc.

e Closer collaboration with non-directional experiments is highly desirable
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Some food for thought ...

How does the effort needed to build a large directional
experiment balance against the confidence gained from an
annual signal collected over several years?



