Getting Rid of Radiological Contaminants in
Scintillator via Nanofiltration”
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Background in KaimLAND 7-Be Measurement

location of background in detector
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radon exposure leads to plating of
210-Pb on surfaces and near-surface

(11-C is cosmogenic and depends on
muon rate)



Radioactive Contamination of Liquid Targets is a
real problem

210-Pb from radon exposure limits KamLAND solar

neutrino measurements. Will also be a serious
problem for SNO+

Alpha's from internal U/Th contamination are a serious
background for low rate reactor experiments, relic SN

neutrino searches, and geo-neutrinos (see KamLAND
measurements)
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Cosmogenic activation of sulfer in some LS components
(especially surfactants) can lead to 22-Na contamination.

22Na (2,58 a)

10,2 % 2mec? = 1,022 MeV
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) This can be uncomfortably
1,274 MeV close to neutrinoless double
beta decay endpoints
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There is also some evidence that optical
transparency in some scintillators is limited

by dimerism of basic components during
manufacturing.

Essentially, two (or more) large organic molecules
get joined together to make a larger molecule
with adverse optical properties.

Difficult to remove by standard techniques.



Getting rid of these contaminants has been handled by making
expensive and complex distillation/scavenging plants. Problems

in boiling combustible liquids underground and in scavenger
regeneration.

Can we find a better way?
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Nanofiltration of water is common,
can it be applied to LS?
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Two basic approaches...



Loose Filter Approach

LS Clean Batch

LS Dirty Batch

Need to reject Dirty Batch when
contaminant concentration becomes
too high and "beaks through"

Loose filter passes LS but
not polyvalent or large
molecules

Flow of
clean LS



Tight Filter Approach

This has the advantage that the "Dirty Loop"
could be cleaned continuously if the volume
is much smaller that the "Clean Loop". For
example, a scavenger to remove 210-Pb.
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Nanofiltration Technology

Multivalent
lons

Viruses

Bacteria

Suspended
Solids

What filter to use?

Looks easy, just pick
appropriate Molecular
Weight CutOff (MWCO)

for what you want to filter.
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Selected bond lengths M O | e C u | e Le n gt h S

e C-H (single): 109 pm
e C-C (single): 154 pm
e C=C (double): 134 pm
e C=C (triple): 120 pm
e C-O (single): 142 pm
e C=0 (double): 122 pm

o C=0 (triple): 107 pm Selected Van der Waal's radii

e C-N (single): 147 pm e H:120 pm

e C=N (double): 122 pm e CH3:200 pm

e C=N (triple): 111 pm e N: 155 pm

e C-F (single): 136 pm e O:152 pm

e C-Cl (single): 176 pm e S: 180 pm

e C-Br (single): 191 pm e F: 147 pm

e C-S (single): 181 pm e Cl: 175 pm

 O-H (single): 96 pm e Br: 185 pm

¢ N-H (single): 101 pm

e N-O (single): 145 pm 0 of PETRESA CANADA
e N=O (double): 117 pm 8 Li“e’g:Alkylﬁff el

Benzene hexagon width from point to point: 280 pm

http://h2g2.com/edited_entry/A791246



LAB Carbon Chain Length

A=200 pm B=(0.82)(109)=89 pm C=(x+y)(109)=872 to 1526

Length = 2(200)+2(89)+(872 to 1526) = 1.45 t0 2.10 nm



LAB Benzine Ring Length

A=120pm B=109 pm C=280pm
Length = 120+109+280 = 0.51 nm

CH,),,CH
HyC(CHy), (GH2), R,

Total Length (estimate): 1.4t02.1+0.5=1.9t02.6 nm

Width estimate: 280 + 2(120) = 0.5 nm
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...but there are many considerations

 Molecular Weight CutOff (MWCO) is just the
start. There are some serious issues.

* CP saturation effects (next slide)
* Surface charge effects (polar molecules can

 be attached to filters and create an electric
field that opposes flow

* Fouling of surfaces by building of molecules
that do not pass through



CP* and Nanofiltration

Well known phenomenon in
chemistry.

Need to continually remove
permeate contaminants

to avoid building up a back
diffusion potential that
saturates the flow (and

can foul the system eventually)

* Concentration Polarization
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Sterlitech CF042

Nanofiltration Unit

Modified at

UC Davis for a permeate
loop to overcome CP

and for handling viscous
LS compared to water




Custom NF cell with permeate loop
to avoid CP issues




Systematic testing of commercial filters as a
function of temperature, flow, pressure has
been completed. We also learned a lot

Nanofilter name Manufacturer Filter material Quoted MWCO pH Range Max. Feed
(Daltons) Temp. (°C)
NFG Snyder Polyamide TFC | 600-800 4-10 45
CK GE Osmonics Cellulose 2,000 4-10 35
Acetate
NFW Snyder Polyamide TFC | 300-500 4-10 45
XN45 TriCep Polyamide 500 2-11 45
V3 Snyder PVDF 30,000 2-11 ~100 (PVDF
melting

point)
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Permeate flux Jp (kg/h/m"2)
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We have identified a set of filters that has

reasonable flow rate for LAB

LAB and LAB-PRS Permeate Flow Rates (XN45

Filter)
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But addition of PRS decreases this flow



Permeate flux Jp (kg/h/m~2)
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PRS has a significant affect on filters with
negative surface charge

Water-PRS Permeate Flow Rates , EtOH Pretreatment (CK Filter)
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Test with water shows that PRS has a significant effect .



We have also identified some positive filters where
PRS IMPROVES flow over pure LAB
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Where we are now...

* Pursuing positive filters and the idea of large
chelating molecules for latching onto

polyvalent metals such as 210-Pb, 238-U, 232-
Th

e Getting some help from FOOD INDUSTRY

* Just started looking into filtering of
monovalent atoms such as sodium. Some
interesting first results...



Pushing lons from LAB-PRS to H,O Permeate
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Spectrum of Sodium-Spiked LAB-PRS Feed before Filtration
* Live time counting: 4000 sec.
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Spectrum of Permeate Water after 2.5 hours of filtration

* Live time counting: 7200 sec.

- 500m! of DI Water Permeate after 2.5 hr. of Filtration
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Conclusions

After 2.5 hours of filtration, no ?*Na appears to have
passed from LAB-PRS to permeate water. However,

XRF showed that the few percent of water in
the LS actually DID preferentially go through

the filter.

Conclusion: LAB/PRS has a higher affinity for Na
than does water

Next — we will try improving sodium mobility off
LAB/PRS using chelating compounds



Conclusions

* Nanofiltration is a technique well known in
industry for purifying water

 Work is ongoing to try and apply this method
to liquid scintillator

* Work on Water-based Liquid Scintillator will
also start — this is actually an easier problem



Experimental Process

Prepare ~30nCi of 2*Na by putting 100 pg of NaHCO, in the
McClellan reactor for 30 sec.

Transfer sodium tracer into 49.2% PRS, 50.8% LAB (w/w) with ~4ml
of DI water

Count 500 ml of LAB-PRS with tracer in HPGe counter for 1 hour as
a control

Put LAB-PRS into feed, put DI water into permeate

Condition filter at 100 PSI for 30 min, filtrate at 200 PSI for 30 min
(flow on filter: 0.7 LPM)

Collect 500 ml DI water permeate and count in counter to check for
sodium

Return DI water to permeate, filtrate another 1.5 hours at 200 PSI
(flow on filter: 0.7 LPM)

Collect 500 ml LAB-PRS feed, count to check sodium levels
Collect 500 ml DI water permeate and count again in HPGe



Experimental conditions/Important information

NF filter: NFG from Snyder
— Quoted MWCO: 600-800 daltons

— Quoted sodium rejection: ~10% (so, should let sodium through filter
well)

e Soaked filter in DI water for 24 hours

 LAB-PRS volume in feed: 842 ml, DI water volume in
permeate: 842 ml

* 24Na half-life: 14.96 hours
* Molar mass of Sodium bicarbonate: 84 g/mol



