Kinetic Inductance Detectors for the CMB:

faster, cheaper, just as good
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Features of TES bolometers
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Sensitivity is entirely determined by two parameters:
G(T), Tc.

A decade of fielded kilopixel science instruments :
~10° person-hours already spent turning photons
into CMB maps
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Failures of TES bolometers

Complicated fabrication:
thermal properties hard to predict:

10™ good wafer as hard as 1 good wafer
(perhaps 100" will be easier?)
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SQUID readout is complicated and expensive
No on-chip multiplexing yet
Crosstalk and stability are a challenges

Limited dynamic range:
You have to get G, Tc just right!

Integration and testing is hard!

PolarBear-2 module
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The kinetic inductance effect

The DC case:
Cooper pairs carry charge without scattering.
Internal E fields are canceled.

The AC case:
Cooper pairs have momentum.
Acceleration leads to a phase shift between | and V.
This acts like an inductance!

At low temperature:
To 1% order, Ly is constant.

To 2™ order, Ly varies linearly with the number of pairs.

Phase shift leads to E field inside the conductor:
Non-zero resistance from quasiparticle currents
R also varies linearly with number of pairs
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We can make a detector out of this
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Figures from Mazin 2009 and Gao 2010
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Alphabet soup:
transmission line mKID

Image from Yates+13, A-MID collaboration
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Alphabet soup:

Lumped Element KID (leKID)
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Image from Mazin group, UCSB
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Alphabet soup:

thermal KID (tKID)
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Image from Micelli group, ANL
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CASPER-ROACH based FPGA systems:

nearly off-the-shelf readout

Anritsu 20 GHz Synth
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to a F5725 Rubidium D
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Multiple demonstrated flavors in use: — p/A > XﬂD - A/D
MUSIC — 256 resonators at 3-6 GHz J
SRON - 4096 resonators at 6 GHz
MAKO — 500 resonators at 100 MHz J
ARCHONS/FNAL — 256 resonators, high BW Polyphase
NIKMOS — custom HW for NIKA/NIKA2 e ale DDC Filter Bank
) <«— Accumulatef€— % Y
More coming soon. . . (on PC) (x3000)

Images: B. Mazin and R. Monroe
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CASPER-ROACH based FPGA systems:

nearly off-the-shelf readout

CASPER-ROACH FPGA board:

Today: $10K, 500 Ch/octave X 1 octave
— increase MUX factor
—~ use more octaves

— custom FPGA solution (multiple ADCSs)

Weinréb SiGe Cryo Amps

Miteq .001-500 MHz

N, EEn

Cryogenic Low Noise Amplifiers
Today: $4K per readout line

But note: >90% of cost is engineering & testing
— Increase MUX factor

— Use more octaves
— custom design and fabrication

In Aug 2015, MAKO 500 pixel demo run cost $30/pixel for readout.

Reaching $10/pixel is straightforward. Reaching $1/pixel is possible.
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Multiplexing density / yield trade off

MUX density dominated by resonator collisions

Higher Q, better uniformity — more channels
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Fundamental sensitivity limits

NEP? = “Background limit for all detectors -

(photon Poisson)2+(photon %086)2

+(recombination noise)%~ " Allpair breaking detectors.
. For ground based CMB case:

~ (photon Poisson)?

+1/R-(amplifier noise)?

_|_ 1 / R' (TL S Nolse) 5 /N f(l/readout, 0, ‘/inductor7TC)

+ (small terms)
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Two Level System Noise: hard to predict a

priori, but follows known scaling laws

Attributed to tunneling states in amorphous dielectrics with broad microwave energy spectra.
Semi-emperical model of Gao et al. agrees with observations:
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Sensitivity engineering: Thomas Edison science

In principle Mattis-Bardeen equations (and other BCS scalings)
provide a full description of KID responsivity, G-R noise, and amplifier
noise terms.

In practice, this works pretty well for aluminum, but poorly for other
materials.

Solution: lterate.

1. Make a KID, strive for clean surfaces.

2. Measure NEP.

3. Adjust design based on approximate scaling laws':

NEP1s o Q4 T2 VD™ T303

NEPomp o TO:3 (Qe/Qr) " T2 VS TS
4. GOTO 1.

* In this case, for a resonator operating at a fixed fraction of
bifurcation power in the linear-response regime.
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On-sky cameras |

MUSIC; Caltech, JPL, NIKA; Grenoble, SRON, Cardiff,
CU Boulder, NIST, UCSB MPFIR, etc. :

576 4-color pixels, 2Zmm-85011 300pixel, 1.25 or 2 mm

CSO 2012-2015 » IRAM telescope 2011

Science papers; user facility Science papers, user facility

NIKA2; 5000 pixel, 1.25 & 2mm

Engineering run 2015
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On-sky cameras ||

Feedline

e o L e
Connects all KiDs

Antenna

In focus of lens

S NOISE e CAd A-MKID; Delft, SRON, MPFIR;
500 pixel, 350 or 850411 ~20kpixel, 350 & 85041M
CSO 2015 APEX telescope 2015
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Many near term projects and demonstrators.

(Some are even funded!)
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BLAST TNG prototype, from Galitzki+14
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DESHIMA devices, image from A. Endo
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SuperSpec: a mm-wave on-chip spectrometer

for high-redshift astronomy
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Photon noise vs. loading —
power and NEP calibration.

NEP < 10~ W+/Hz
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Take this working design and adapt it to make

an antenna coupled CMB pixel.

IT.— 08K T — 100mK

New mm-wave coupling scheme.

mim-wave KID KID microwave
antenna inductor capacitor readout
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Wisconsin & Goddard CMB KIDs:

TIN direct absorber for QUBIC

4617 100 GHz source, ground-based telescope iy
— TiN MKID - “ ot
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* At 100 mK, a 100 GHz KID pays a 10%
penalty in NEP compared to a TES with a
readout bias factor of 2.

Courtesy of A. Lowitz, A.
Brown, V. Mikula, T.

A Stevenson, P. Timbie, and
\\- E. Wollack
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Columbia CMB KIDs: thin Al LeKIDs from a

commercial vendor for ground based CMB

1) low NET
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T leKIDs from a commercial fabrication house.
A

Dual-pol prototype now being tested. Multichroic
horn+OMT pixels in design.
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Al-Ti bilayer 100 MHz kids from Grenoble
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Novel non-linear kinetic inductance devices:
parametric amplifiers

e ~0.8m CPW line — 1um line width, 35nfke
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Novel non-linear kinetic inductance devices:

the KPUP as a SQUID replacement

Use a KID to read out TES currents.
—{_ O——( OG—

Demonstrated 8 pA/+/Hz with resistors —
: | L
Tests with TESes under way. % Fi 1
Needs ~ 10 nm features (for now). D000 —
0 &L
— T
i3

.
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The KIDs are alright:

Debunking common myths |

1. KIDs are only good at submm frequencies

Dense focal plane packing makes KID multiplexing more important at high frequencies.

Background limited operation is easier at higher frequencies.
Operating at <100 GHz places constraints on Tc, and thus Tstage and materials.

But, there's no fundamental reason KIDs can't compete with TESes in all CMB bands.
A robust demonstration is just around the corner.

2. KIDs are inherently noisier than TESes.

All pair-breaking detectors suffer a recombination noise penalty.
But, this is at most V2 times the photon limit.

Also, this is comparable to any real world TES with a viable safety margin in G
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The KIDs are alright:

Debunking common myths Il.

3. Superconducting nitrides were a mistake.

Superconducting nitrides are complicated and poorly described by BCS equations.
The most robust and sensitive KIDs demonstrated to date have been transmission
line resonators made from aluminum. (Or hybrids.)

BUT, titanium-nitride KIDs have demonstrated BL sensitivity in the lab.
High resistivity is a good match for direct-absorption leKIDs.

High-Qs and low-frequencies enable cheaper readout.

Also, extremely thin Al films aren't exactly simple either.

4. You don't need KIDs to do the near-term science we want to do
with the CMB instruments.

Okay — actually this one is probably true. But, is “need” the right question?

If fabricating, reading out, and testing half a million good TESes were easy, then
the answer would be obvious. But, is it really easier than investing in KID
development?
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Conclusions and questions

KIDs today are as mature as TESes were in 2006.

KIDs have demonstrated: What's left to do?
Operation in CMB bands. Demonstrate all of these at the same time.
NEP for BL for a good CMB site Yield & NET uniformity for large arrays.

High photon-QP conversion efficiency 1/f noise under realistic conditions.
On-sky science publications

KIDs will play a role in near term submm-science, CMB-S5, future space telescopes.
What about CMB-S4?

Qustions:

1. Can we really build half a million TESes within a realistic S4 budget?
2. What sort of KID demonstration would be compelling, and is it a realistic possibility?
3. We've got lots of options. How should we spend resources among:

Brute force approaches— more wafers, more wires, more SQUIDs

Low-risk extensions — microwave MUX, on-chip FDMUX, etc.

Less mature but promising technology — KIDs

Blue-sky, high-risk technology — KPUPs.
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