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Motivation: the Mu2e calorimeter
• The baseline uses barium fluoride crystals:

– Fast decay time       short integration time, high rate capability
– Good energy and time resolution 
– Radiation hardness
– Suitability for a possible Mu2e upgrade

• Requires a new photosensor
– Development undertaken by Caltech/JPL/RMD collaboration

– Supported by Mu2e and DOE SBIR Grants I and II
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Summary of calorimeter requirements
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• Provide high electron reconstruction efficiency for muon rejection of 200
• Provide online trigger capability (HLT)
• Provide cluster-based track seeds for track finding 
• In order to do so it should:

 provide energy resolution σ(E)/E = o (5%) monitored at a level of <0.5%
 provide timing resolution σ(t) < 0.5 ns 
 provide position resolution < 1 cm

These requirements should be met in the radiation environment:
Total exposure of the inner ring of the disks
• front face of the inner ring of crystals:

gammas: 100 krad/crystal
neutrons:  1012 n_1 MeV/cm2

• Inner ring of photosensors
neutrons:   3x1011 n_1 MeV/cm2
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Barium fluoride scintillation light
• BaF2 has a 220nm scintillation component with 900ps decay time, but 

with a much larger 300nm component having a 630ns decay time
• For the Mu2e calorimeter, we utilize the fast component to provide 

excellent time resolution for discrimination against background, as well 
as for high rate capability

– Doing so requires either suppression of the emission of the slow 
component or a “solar blind” photosensor
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Photosensor options
We have developed an avalanche photodiode, based on an existing large area 
(9x9mm) RMD device, to produce a sensor that has the needed characteristics
• High gain (500 @ ~1800V)   (2000 is possible)
• High quantum efficiency at 220nm
• Suppression of response at 300nm
• Improved time response characteristics
• Radiation hardness

The modifications consist of:
• Removal of undepleted silicon in front of avalanche region of the APD
• Using molecular beam epitaxy (MBE) to produce a superlattice region beneath 

the silicon surface
• Producing an antireflection bandwidth filter using atomic layer deposition (ALD)

We have also begun work on SiPMs having an ALD filter, and, potentially, 
superlattice doping, with two manufacturers
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The R&D Collaboration
• JPL

– The JPL Microdevices Laboratory invented delta-doping (3D) (M. Hoenk 
et al., APL 61 1084 (1992)) and superlattice (2D) techniques to improve UV 
sensitivity and robustness of space-qualified CCD sensors

– JPL also pioneered atomic layer deposition of antireflection and bandwidth-
limiting filters

• RMD
– RMD APDs have higher gain than others and good radiation hardness
– RMD has a history of collaborative R&D with experimentalists

– The R&D Collaboration
H.O. Gesstson, D.G. Hitlin, K.Flood, J.H. Kim, J. Trevor, Caltech
M. Hoenk, J. Hennessey, A. Jewell, NASA Jet Propulsion Laboratory, Caltech
R. Farrell, M. McClish, RMD Inc.
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High purity silicon wafer

e-

Signal
220 nm

Background
300 nm

e-e-e-e-

V

8 9

The structure of a superlattice-doped
solar-blind avalanche photodiode

Oct. 6, 2015David Hitlin      CPAD Instrumentation Frontier Meeting



11

Form grooves for sidewall diffusion
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Boron diffusion
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Form N+ contacts
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Polish p-side
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Superlattice doping by MBE
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Solar blind coating by ALD
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R&D chronology
• We have fabricated and tested a variety of superlattice/ALD filter sensors based on 

RMD APDs:
• Chip sizes: 3x3mm2, 9x9mm2, 14x14mm2

• Superlattice process variations, e.g., depth of residual undepleted
region, density of doping

• Filters: three and five layer ALD filters of various designs
• Masking of die edge region
• Details of bias contact region

• We have demonstrated
• Improvement of time response due to the superlattice and removal of 

undepleted material
• Improvement of QE at 220 nm due to the superlattice and antireflection filter
• Suppression of BaF2 slow component at 300 nm

• Remaining items
• Superlattice devices have higher noise than standard APDs

• Operation at reduced temperature adequately reduces noise
• Ongoing work is making progress in further reducing the dark current

• There have been some device failures at full bias      
• This depends in detail on bias contact geometry; it is believed to be understood 
• Long-term reliability tests will be done prior to production for 2016 beam test

• Radiation hardness with gammas and neutrons to be demonstrated
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Superlattice modifications
 JPL has developed superlattice structures 

that provide greatly enhanced quantum 
efficiency and improved time response
 Delta-doping and superlattices have 

been successfully employed for many 
years to enhance the UV performance 
of CCDs and APDs used in UV 
astronomy in satellites and balloons

 Monoatomic layers of boron are implanted 
beneath the (thinned) photosensitive 
surface of the Si device using molecular 
beam epitaxy (MBE) (2D doping)

 The MBE layers allow the conduction 
band to remain stable with varying surface 
charge
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UV stability
• Superlattice provides stability under intense UV illumination

U. Arp et al.,  J. Elect. Spect. and Related Phenomena, 144, 1039 (2005)
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Improved time response
• Elimination of the undepleted region before the avalanche structure 

substantially improves APD time performance over normal 9mm RMD device
– Both rise time and decay time are improved

M. McClish

Superlattice: rise time 6ns

Unmodified: rise time 20ns

RMD 9x9mm
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C.-h. Cheng

Simulation of the time resolution for 
105 MeV/c electron showers, as in Mu2e

14

Twenty events, including shower, 
scintillation pulse, light propagation,
APD and preamp responses
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Superlattice modifications
 Recombination of photoelectrons is suppressed by quantum exclusion,

resulting in close to 100% internal QE
 Quantum efficiency in the 200-300 nm region approaches 

Si transmittance (1-R) limit
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ALD antireflection filters improve QE
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ALD antireflection filter
• Atomic layer deposition of multiple groups of single atomic layers 

produces integrated antireflection filters

• The ALD filter has been designed 
to be efficient at 220 nm and
provide strong extinction at 300nm

• ALD filter characteristics
can be adjusted to trade QE
at 220nm for 300nm extinction

A. Jewell

J. Hennessy

Measured at unity gain

ALD Al

ALD Al
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Effective QE increases with gain
 Full quantum efficiency is reached as bias is increased, as full depletion is 

reached at high bias voltage
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Optimizing the filter
 There are actually two fast scintillation components: 195 and 220 nm, and

two slow components: 320 and 400 nm
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Optimizing the filter
 The “Standard” five layer filter is centered centered on the 220 nm peak

Filter characteristics 
vary with angle 
of incidence
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Optimizing the filter
 The new “wider” five layer filter encompasses more of the 195 nm peak

and provides improved slow component suppression

Filter characteristics 
vary with angle 
of incidence
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Fast/slow component comparison
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Dark current, noise, temperature and all that
• Noise in APDs is dominated by parallel noise
• For a high rate experiment such as Mu2e, we

want a short gate time
• Our current superlattice APDs have higher dark 

current and thus higher electronic noise than the 
standard RMD versions

•
• We have been making measurements with a charge sensitive preamp and a 

waveform sampler with an effective integration time ~10µs
• Measured noise at a given Idark thus has to be scaled to shorter gates
• Noise measurements are now being repeated with the FEE and a narrow gate
• Time resolution measurements with DRS4 will follow
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Dark current vs. temperature
• Gain at a given bias and resulting dark current are a function of temperature

Standard RMD 9x9mm APD
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• Gain at a given bias and resulting dark current are a function of temperature

Superlattice/5 layer ALD  
9x9mm APD (SL 7-1)

Dark current vs. temperature
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• The SL/Filter APD (D18-2) at -10°C has the same dark current as the 
standard APD at room temperature

• The latest SL/filter APD (SL 7-1) shows substantial improvement in dark current

Comparison of dark current vs. temperature
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• The calorimeter photosensors (APD or SiPM) and FEE/digitizers require active 
temperature management, i.e., the capability to maintain a known temperature 
to a given precision

RMD APD 
Hamamatsu MPPC

o oG / T 6% / C at -10 C∆ ∆ −
o oG / T 6.3% / C at  20 C∆ ∆ 
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• Efforts to further reduce the noise are ongoing
• Operation at of SL/ALD APDs at reduced temperature provides adequate noise 

performance

9mm x 9mm standard RMD APD

10 µs gate

Photosensor gain, noise, 137Cs spectra

27

BaF2 1 cm3

Grease
-10oC

BaF2 1 cm3

Grease
-15oC

9mm x 9mm SL APD (SL 7-1)
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Electronic noise at reduced temperature

Scale : BaF2 23 p.e./MeV/APD(9x9) @ 60 ns τint (glue coupling, no dose)
We will presently make direct measurements with a 60 ns gate

28

APD # Temp Bias Voltage Gain Dark Current

Noise 
(calculated) 

ev(Si)

Noise 
(measured) 

eV(Si)

Noise 
(calculated) 

ev(Si)
Noise  

(calculated) p.e.
10 µs gate 60ns gate

465-5-3 25 1800 449 3.99E-07 848 769 66 18.3
465-5-3 10 1775 559 1.21E-07 419 443 32 9.0
465-5-3 0 1750 578 4.41E-08 249 264 19 5.3
465-5-3 -10 1725 559 1.66E-08 155 158 12 3.3
465-5-3 -15 1700 401 7.90E-09 126 140 10 2.7

465-5-4 25 1815 526 4.87E-07 866 846 67 18.6
465-5-4 10 1780 525 1.28E-07 444 501 34 9.6
465-5-4 0 1750 436 4.77E-08 298 263 23 6.4
465-5-4 -10 1725 425 2.05E-08 198 199 15 4.3
465-5-4 -15 1725 572 1.52E-08 147 139 11 3.2

D18-2 0 1700 606 8.17E-07 1045 828 81 22.5
D18-2 -10 1660 455 2.87E-07 715 548 55 15.4
D18-2 -15 1650 468 2.04E-07 594 370 46 12.8

SL 7-1 10 1700 531 4.22E-07 802 1440 62 17.3
SL 7-1 0 1675 550 1.27E-07 432 791 33 9.3
SL 7-1 -10 1650 490 3.72E-08 248 440 19 5.3
SL 7-1 -15 1640 558 2.10E-08 175 361 14 3.8
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Required noise performance

• 1X background, LRU 5%, 23 pe/MeV, glue coupling
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Birk’s law: application to BaF2

• Some of the barium fluoride crystal 
samples have traces of radioactivity,
producing α lines

• The Birk’s law constant for BaF2
is quoted in the literature as 3.7

• We have found, however, that
the Birk’s law constant is different
for the fast and slow scintillation
components

• This has implications in Mu2e for the scale
of the neutron-induced background
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Radiation hardness
• Conventional RMD APDs (2x2 mm) were tested for radiation hardness for CMS at 

PSI using 72 MeV protons (up to 5 x 1012 n/cm2 equivalent)

• A total dose of 2.08 x 1010 n/cm2 produced
little or no change in gain or noise

• 137Cs spectra taken at various integrated
radiation doses shows little change
in quantum efficiency at Mu2e 3 year dose

• The increase in noise seen at the highest 
doses is reduced at lower temperatures

• Annealing at 100°C partially restores noise
performance

• We have begun a series of neutron and γ
irradiation tests with our strong 252Cf and 137Cs
sources, using SL/ALD APDs as well as 
conventional devices

31

Radiation Hardness of Avalanche Photodiodes,
R. Grazioso et al. IEEE NSS Conference Record,
1, 240 (2001). 2.08 x 1010 n/cm2
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• First exposure (at room temperature) with 252Cf: 109 n/cm2

First results on neutron irradiation
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Conclusions
 Barium fluoride can be used to construct a very fast crystal calorimeter, provided 

the fast scintillation component can be exploited for its excellent time resolution 
and high rate capability

 We have developed the required photosensor, a superlattice-modified avalanche 
photodiode with a narrow band antireflection filter, by modifying a standard 
RMD device

 Device characteristics
 High gain (>500)
 High QE for the 220nm BaF2 fast component
 Insensitive to the 300nm BaF2 slow component
 Excellent time performance
 Can withstand high integrated flux of UV
 Standard RMD APDs have been shown to be radiation hard 

Irradiation tests of the SL APDs with gammas and neutrons are underway
 Noise of initial devices is higher than that of standard devices

 Operation at reduced temperature provides noise performance similar 
to that of standard RMD APDs at room temperature

 There is a clear R&D path, consistent with the project schedule, 
to further reduce the noise
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