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Noble Liquid Detectors for Particle Physics

» Many current and near term particle physics experlments using
noble liquids as detector medium ArgoNeut data:

Neutrino
- pBooNE, SBND, LArIAT, DUNE
Dark Matter search
- CLEAN, LUX, XENONnNnn
Others
- nEDM (He)

»  Scintillation Light
Liquid is transparent to produced light
VUV: 128nm LAr 175nm LXe
Large signal (~10k y/MeV for LAr)

He Ne Ar Kr Xe




Current Photon Detection Methods in Noble Liquids

» Use SiPMs or PMTs + wavelength shifter
to for reconstruction
background rejection

»  Limitations

WLS degrades timing resolution
WLS handling
Limited position resolution
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MCP-based PMTs as Alternative for Cryogenic
Detector

» Micro-channel plate (MCP) based photodetectors are capable of
imaging, and having good spatial and temporal resolution.




MCP-PMTs at Argonne

» The Argonne MCP Photodetector program seeks to develop improved, lower
cost MCP photodetectors:

» New MCP: borosilicate glass capillary array coated by Atomic Layer
Deposition (ALD). Very robust, large-area (20%x20cm?).
High gain: secondary emission layer engineered by ALD

» New packaging: all-glass package with an thermopressure indium seal

Argonne is focused on producing 6x6 cm2 small form-factor
detectors, as a way to optimize the manufacturing process, for

testing and getting devices out to the community.
q Final goal: 20 cm

a MCP-PMT

ANL focus: 6 cm devices

Traditional PMT




MCP-PMTs Components

Top Window
Photocathode \

Nichrome border

Gnid spacer #1
Top MCP
Gnid spacer #2
Bottom MCP
Indium seal
Gnid spacer #3
Side wall

Anode strip
Bottom window
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MCP-PMT Major Components:
- Aglass anode plate with strip line readout
- Aglass side wall which is glass-frit bonded to the bottom plate
- A pair of MCPs coated by Atomic Layer Deposition (ALD)
- Aglass top window with a bialkali photocathode
- Anindium seal between the top window and the sidewall.



Argonne Small Tube Processing System

Production facility and R&D
platform

~1 device / 2 weeks

6 functional detectors with
internal resistive grid spacers to
bias MCPs

4 functional detectors with
modified design for individual
MCP biasing

<50 ps time resolution for single-PE
<15 ps time resolution for multi-PE
<0.8 mm position resolution for large pulses

-----

Tube32 (tested
twice ot Fermb lab)




Typical MCP signal

» Pulse width: ~2-5ns
» Rise time: ~700 ps
» Falltime: 2-3 ns
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QE & Gain

»  Photocathode QE scan measured at 350nm
»  Gain was measured in single photoelectron mode

QE scan Gain VS HV

I (WA)

Position Y/ cm
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Time resolution

= The light intensity is calibrated by the number of photoelectrons. Results are
independent of the quantum efficiency (QE) of the photocathode.
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Position resolution / differential time resolution

» Dependent on the Noise/Signal ratio. Z, Z,
»  Limited by the electronics (~7ps) and \/ ‘
the beam size (~1mm) \.. = |
Large pulses Small pulses . o .
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Customizing MCP-PMTs for cryogenic applications

6x6 cm? ‘small tile’

Window with photocathode

»  Test the performance of individual
components in cryogenic
environment

»  Tune, modify the component to  ndium wire —_|
achieve desired performance, €.9. Mcps
fused silica or MgF window to

replace borosilicate glass Grid spacers

Anode base plate & /

S 12



Testing the seals

v

Structural integrity in cryogenic
environment

Indium seal
Glass frit bond

» Dunked device in LN2
»  Performed “slow” dunk and “fast” dunk
» for >48 hours at a time

» 4 devices tested (2 fully sealed) 1 failure
Failure due to hairline crack on sidewall
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Tuning the MCP for cryogenic temperature

The Atomic Layer Deposition (ALD) : pore

self-limited nanostructure deposition N |
method.
. 148
Precursors applied separately —
excellent control over material growth

and hence the MCP parameters

resistive ALD
emissive ALD (AIO, MgO)

Working with Argonne Energy System ductive electrode
R VsTime

Division (Anil Mane and Jeff Elam) on

development of resistive and SEE 1.00E+12

coatings for MCPs. 1.00E+11
1.00E+10

1.00E+09

R(ohm)

Have produced two MCPs with lowered
room temperature resistance that hit 1.00E+08 ~_

target resistance at LN2 1.00E+07 Dip in
1.00E+06 liquid N2
0 125 250 375 500

Time (sec)
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Tuning the MCP for cryogenic temperature

» MCPs operational in cryogenic temperature developed
Test stability at 87K
Cryogenic behavior of ALD materials being explored
Gain measurements underway
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Photocathode for UV and low temperature

»  Literature survey shows GaN, Csl works O. Siegmund et a/
Test cryogenic behavior [
»  Designed setup for testing R = Bamond (C9)
QE vs temperature ~ --e--Cal
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Testing/Simulation

»  After preliminary tests at Argonne, seek to use the liquid argon test facilities
at Fermilab.

»  Looking at geometries and simulation
See how MCP-PMTs perform

Window with photocathode

\

Testing MCPs

Simulations
Physics capabilities

Grid spacers

J:EEDB ACK

\

/ 4 Anode base plate
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Plans for Argonne MCP-PMTs

Argonne MCP-PMT:

» Different geometries, smaller MCP pore size (10 um)
» Pad readout

»  Photocathode research

»  Neutron detector
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Plans for Argonne MCP-PMTs

Cryogenic Applications

»  Bare MCP detector for two phase detectors
»  Use MgF top window (no WLS)
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Summary

» Argonne Detector R&D group has successfully produced working
MCP based detectors.

» Developing MCP photodetectors to operate in liquid argon.
Tuning MCP resistance for cryogenic operation

Assessing candidate photocathode materials for low T operation

»  Seeking to demonstrate operation at LAr temperature with tuned
MCPs and appropriate photocathode
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