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Current Developments
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Current Detector Development

• SLAC has been focused on ATCA based data acquisition and control systems
• RCE (Reconfigurable Cluster Element) platform is a full meshed distributed architecture, based 

upon network based “system on chip” elements
- “Plug in” architecture for applications
- Firmware and software development kits
- Based upon Xilinx Zynq platform
- Full mesh 10G network
- 96 high speed back end links

• ATCA based general purpose analog & RF board
• Digital back end is based on Xilinx Ultrascale FPGA
• Supports two double wide dual-height AMC cards for 

analog and RF processing
• LCLS-1 LLRF upgrade
• LCLS-2 BPM, MPS and timing system
• SSRL RF booster upgrade
• CMB
• TES (transition edge sensor) photon detector
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RCE @ DUNE

• Readout for 35Ton detector
• Integrated with NOVA timing system
• Integrated with ARTDAQ backend system
• Supports three modes of operation

- Externally triggered
- Scope mode for selected channels
- Burst mode for large raw snapshots of full 

detector
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RCE @ ATLAS CSC

• Replaced previous RODs which limited trigger 
rate < 70Khz

• Integrated with ATLAS timing and trigger system
• Integrated into ATLAS data acquisition
• Successful demonstration of 100Khz trigger rate 

@ 13% occupancy
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RCE @ Heavy Photon Search

Hybrids:
Pulse shaping
Pulse sampling

Buffering

FE boards:
Amplification

Analog to digital
Hybrid control/power

DAQ Platform
SLAC RCE (ATCA blade)

JLab DAQ

Flex cables:
Impedance controlled, low 
mass signal/bias/control to 

hybrids

Power supplies
Low voltage
Sensor bias

• Integrated with JLAB’s timing and back end DAQ system (CODA)
• Took data at beginning of 2015
• Expect more data runs in 2015/2016 
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Upcoming and Potential Experiments

• LSST
- Data acquisition and data cache

• ATLAS Inner Tracker (ITK) upgrade 
development

• nEXO
- 2nd generation to EXO 200

• LCLS-1 accelerator controls upgrade
- Beam Position Monitor (BPM) upgrade
- Low Level RF (LLRF) upgrade

• LCLS-2 high performance accelerator controls
- Timing distribution
- Beam position monitoring (BPM)
- Bunch charge and bunch length monitoring
- Machine protection system

• LCLS-2 detectors and data acquisition
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Data Acquisition Hierarchies
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Data Acquisition Interconnects

• Data reduction, triggering and event building have similar interconnect requirements
- Scalable low latency interconnect 
- Accessible to both low level firmware and high level software

• Need for flexible architectures for interconnect between nodes
- Low latency switched networks allow for design flexibility
- Best to leverage commercial networks

• VC money invested heavily in switch technology R&D in 2000 - 2005
- Ethernet, Infiniband & PCI-Express won out

• Ethernet may be the best approach for inter-FPGA communication
- Proven roadmap in scalability in larger systems
- PCI-Express is optimized for short reach within the server
- Ethernet is most efficient to implement in FPGAs
- 10G & 40G proven on standard backplanes and optical fibers, roadmap to 100G
- Congestion management and end to end flow control is still a challenge
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Data Acquisition Interconnects

• Firmware can assist in reducing the point to point latency for inter-node data movement
- TCP/UDP/RUDP offload for software (RUDP is RFC908/RFC1151/Cisco) 
- Direct memory to network transactions
- Firmware driven communication

• Multiple possibilities for data path
- Varying levels of hardware/software involvement 
- Depends on application and latency requirement

Network 
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Software Communication

• Possible software data paths include:
- Classical network access through standard network layers
- TCP offload (FPGA resource heavy)
- UDP offload (Minimal FPGA resources)
- RUDP (Medium FPGA resources)
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Firmware Communication

• Possible hardware paths are similar to software:
- TCP offload (FPGA resource heavy)
- UDP offload (Minimal FPGA resources)
- RUDP (Medium FPGA resources)

 RUDP provides end to end flow control and buffer management

• All hardware & software modes can coexist for full flexibility
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Data Processing

• System on chip (SOC) based designs allow tight coupling of software and firmware for online data 
processing

• Algorithms typically involved baseline subtraction, waveform fitting and cluster finding
• Larger detectors may have neighboring channels which interface to different data acquisition nodes

- Inter-node communication facilitates cluster finding and proper charge calculations
• Challenge is to find the correct balance of firmware and software processing

- Tight coupling allows the boundary to adjust to shifting requirements
- Early development can be proven in software and then ported to firmware

• Firmware pre-processing can organize data into a format best suited for software access
- Feature tagging to reduce software searching within memory
- Direct to user space DMA

SLAC RCE SOC
Architecture
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Triggering

• Trigger systems can utilize Ethernet based interconnect 
- Trigger nodes must communicate with each to coordinate trigger decisions
- Supports central node model as well as distributed trigger processing

• Varying levels of data sharing requirements
- Some systems allow meta-data to be passed for trigger decisions, reducing bandwidth
- Complex systems must pass raw data over interconnect

• Latency requirements depend on buffer and bandwidth capabilities of the front end
- Small buffers in front end reduce the available time, squeezing the latency requirement
- Front end with high bandwidth interconnects can utilize deeper buffers in the daq nodes
- Front ends which contribute to trigger must send at least some raw data

Sensors
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Event Building

• Similar network requirements for event building
- Central event building
- Distributed event building with dedicated nodes
- Distributed event building utilizing existing DAQ nodes

• Event building is utilized for systems that required higher level (L3) triggers
- Reduces data storage requirements with additional filtering

• For some systems higher level trigger is not utilized
- This systems may rely on post processing or even “offline” data filtering
- Often utilized in photon science where post processing is very experiment specific
- HDF5 allows for timestamped data storage for later event building
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RCE Platform Timing Distribution

• Crate based systems allow for a single point of entry for timing
• Clock, trigger and timestamp information is decoded at the point of entry 

- Single place where timing system specific logic needs to reside
- Eases interfacing to foreign timing and trigger distribution systems

• Timing information is distributed locally within the card and across the backplane
- ATCA provides timing busses which meet telecom standards
- Used to forward clock, trigger pulses and timestamp data
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Development Challenges
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Development Challenges

● Organizations face challenges developing for high performance systems
○ Not everyone is a highly skilled firmware engineer
○ Most are not familiar with real time programming

● As we transition to firmware based systems, skill sets have to evolve as well
○ Need to bridge the gap and smooth the transition
○ Advanced RF developments are transitioning to FPGAs 
○ A high performing DAQ platform is not attractive if “experts” are required for development 

and maintenance
○ Can create a manpower bottleneck
○ Learning curve encourages dirty alternative approaches which are hard to maintain

● FPGA vendors address this problem with higher level synthesis tools and Matlab integration
○ Examples and development flow assume the entire FPGA
○ Does not bridge the gap to larger complex designs
○ Results are often difficult to debug
○ Revision tracking requirements are not met
○ Difficult path to native VHDL/verilog conversion
○ Not easy to integrate a complex base platform
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Creating The Sandbox

• SLAC employs a partnership between the low level firmware designer and the application designer
• Leverages tools provided by vendors with an organized design flow 

- Well defined example designs
- Make based build system which utilizes vendor API (Xilinx Vivado TCL API)

• Creating a well defined “sandbox” in which the application developer can work
- Well defined interfaces for application developers
- Data in and out delivered via AXI-Stream interfaces

• Core design is created and synthesized with the application as a black box
- Design checkpoint containing the synthesized core and associated constraints is created 

• Application is developed using one of the higher level development tools from vendors
- Matlab Simulink
- Vivado HLS
- Registers for configuration and status can be created in HLS tool
- Output of higher level development tool is a design checkpoint of synthesized design

• Build scripts combine the two checkpoint files into Xilinx project and perform place and route
• Partial reconfiguration provides additional isolation but the licensing is  still costly
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Shrinking The Sandbox

• Some limitations and irritations have been identified with this approach
- Sometimes simulink can generate problematic RF blocks
- RF block parameters are not always matched to expectations
- Concerns about revision tracking and readability have been raised

• SLAC has been addressing similar problems in native VHDL/Verilog designs
- Identify commonly used modules and add them to standard library
- Reduce dependency on coregen and ip generator by creating parameterized native VHDL versions of 

common library cores (FIFOs, RAMs, DSPs, etc)
- Create hierarchical building blocks which can be used in more complex algorithms

• Similar approach is being employed for HLS and Simulink designs
- Identify common DSP and RF blocks which are used in many designs
- Create building blocks written in VHDL with configuration parameters
- Slowly replace vendor library black boxes in Simulink and HLS designs with locally maintained blocks

• Library approach reduces risk by leveraging well tested common blocks used in many designs
- Readability and revision tracking is better than auto generated VHDL/Verilog
- Provides path to convert initial high level design to native VHDL 
- Ensures long term maintainability of designs

• Create well documented build scripts and library structures
- Supports multiple vendor tools with a common project structure
- Text based configuration and module based structure definition
- Allows build from checkout instead of deploying Xilinx or Altera projects
- Eases integration of re-usable libraries
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Libraries & Open Source

• SLAC’s AIR division has created an expansive library for firmware development
- VHDL helper utilities to bridge the gap to VHDL-2008 availability in tools
- Parameterized modules for commonly used blocks (FIFOs, RAMs, AXI-Lite, AXI-Stream)
- DMA engines for Zynq and PCI-Express designs
- Ethernet blocks and custom high speed serial protocols (PGP)

• Common software libraries and drivers also available
- Support scripts and libraries for RCE based systems
- General purpose hardware abstraction software

• We are currently exploring legal options for releasing libraries and build scripts as open source
- DOE has defined guidelines
- Libraries are already released as part of core design within collaborations
- Encourage adoption of our libraries at other laboratories
- Encourage other laboratories and collaborators to add to and enhance libraries and build systems

• Can the various DOE laboratories collaborate in firmware and software development?
- Look towards open source projects as an example
- Some structure required but can be sectional with localized expertise
- Encourage interface similarities to enable portable design reuse?
- Ideal result would be design portability across open hardware platforms

• What can we learn from the current open source trends?
- Rise of open hardware platforms
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Roadmap

• Continue development of RCE platform
- Improved SDK and support tools
- Research available real time options for Linux
- 40G upgrade for COB 
- Ultrascale Zynq upgrade

• Continued R&D into RCE based applications
- Low latency trigger architectures and algorithms
- Online data reduction with software/firmware 
- High density flash storage coupled to RCE processors (LSST)

• R&D into Gigachip (GCI) memory systems
- Multiple processors/FPGAs accessing central shared memory

• Demonstrate low noise analog designs in ATCA
- LCLS-2 controls platform
- High density photon readout with tight integration to RCE platform

• Continue R&D into FPGA based RF platforms
- ATCA based carrier board at the core
- Build IP library for RF & DSP cores
- Improved design flow and revision tracking
- LCLS-1 low level RF upgrade
- TES based photon detectors with RF

• Improved hardware abstraction
- “Device Tree” like description file to define the hardware registers and overall structure
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Conclusion

● SLAC has a successful SOC based data acquisition platform (RCE)
● We have an eye towards future upgrades of our existing platform
● SLAC is embarking on integrated analog and RF designs in ATCA
● We are continuing our successful development of data acquisition systems, 

detectors and high performance data processing
● We are addressing the needs of a diverse development community with 

varying skill sets
● We are embarking on bringing our data acquisition expertise into controls 

systems
● We hope to join in a larger collaboration of DOE laboratories


